

Case Study | Sanding Dust Control

Customer: Automotive Metal Stamping

Challenge:

- Control metal and aluminum dust in rework area
- 2. Minimize CapEx
- 3. Keep dissimilar metal dust segregated

Benchmarking:

 Current method is to sand parts with a non-vac orbital sander. Sanding all parts creates fine metal and aluminum dust. The areas have to be swept daily.

- 2. Aluminum part is long and flat, abrasive consumption is .7 parts per disc
- 3. Steel part is a small and curved part, abrasive consumption is 19 parts per disc

Solution: Self generated vacuum orbital sanders, clean sand discs and disposable dust bags

Results:

• Dramatically reduced airborn sanding dust

Part type	Previous	New	Annual Savings
Aluminum,	\$.26/part	\$.089/part	<mark>\$ 11,372</mark>
long/flat			
Steel, curved	\$.032/part	\$.021/part	<mark>\$ 4,950</mark>